Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.12.05.22282933

ABSTRACT

Background COVID-19 vaccines with alternative strain compositions are needed to provide broad protection against newly emergent SARS-CoV-2 variants of concern. Methods We conducted a global Phase 3, multi-stage efficacy study (NCT04904549) among adults aged [≥]18 years. Participants were randomized 1:1 to receive two intramuscular injections 21 days apart of a bivalent SARS-CoV-2 recombinant protein vaccine with AS03-adjuvant (5 g of ancestral (D614) and 5 g of B.1.351 [beta] variant spike protein) or placebo. Symptomatic COVID-19 was defined as laboratory-confirmed COVID-19 with COVID-19-like illness (CLI) symptoms. The primary efficacy endpoint was the prevention of symptomatic COVID-19 [≥]14 days after the second injection. Results Between 19 Oct 2021 and 15 Feb 2022, 12,924 participants received [≥]1 study injection. 75% of participants were SARS-CoV-2 non-naive. 11,416 participants received both study injections (efficacy-evaluable population [vaccine, n=5,736; placebo, n=5,680]). Up to 15 March 2022, 121 symptomatic COVID-19 cases were reported (32 in the vaccine group and 89 in the placebo group) [≥]14 days after the second injection with a vaccine efficacy (VE) of 64.7% (95% confidence interval [CI] 46.6; 77.2%). VE was 75.1% (95% CI 56.3; 86.6%) in non-naive and 30.9% (95% CI -39.3; 66.7%) in naive participants. Viral genome sequencing identified the infecting strain in 68 cases (Omicron [BA.1 and BA.2 subvariants]: 63; Delta: 4; Omicron and Delta: 1). The vaccine was well-tolerated and had an acceptable safety profile. Conclusions A bivalent vaccine conferred heterologous protection against symptomatic infection with newly emergent Omicron (BA.1 and BA.2) in non-naive adults 18-59 years of age. ClinicalTrials.gov: NCT04904549


Subject(s)
COVID-19
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.12.02.22282931

ABSTRACT

Background Booster vaccines providing protection against emergent SARS-CoV-2 variants are needed. In an international phase 3 study, we evaluated booster vaccines containing prototype (D614) and/or Beta (B.1.351) variant recombinant spike proteins and AS03 adjuvant (CoV2 preS dTM-AS03). Methods Adults, primed 4-10 months earlier with mRNA (BNT162b2, mRNA-1273]), adenovirus-vectored (Ad26.CoV2.S, ChAdOx1nCoV-19) or adjuvanted protein (CoV2 preS dTM-AS03 [D614]) vaccines and stratified by age (18-55 and [≥]56 years), were boosted with monovalent (MV) D614 (5[≥]g, n=1285), MV (B.1351) (5g, n=707) or bivalent (BiV) (2.5[≥]g D614 plus 2.5[≥]g B.1.351, n=625) CoV2 preS dTM-AS03. SARS-CoV-2-naive adults (controls, n=479) received a primary series (two injections, 21 days apart) of CoV2 preS dTM-AS03 containing 10g D614. Antibodies to D614G, B.1.351 and Omicron BA.2 and BA.1 variants were evaluated using validated pseudovirus (lentivirus) neutralization (PsVN) assay. D614G or B.1.351 PsVN titers 14 days (D15) post-booster were compared with pre-booster (D1) titers in BNT162b2-primed participants (18-55 years old) and controls (D36), for each booster formulation (co-primary objectives). Safety was evaluated throughout the trial. Results of a planned interim analysis are presented. Results Among BNT162b2-primed adults (18-55 years old), PsVN titers against D614G or B.1.351 were significantly higher post-booster than anti-D614G titers post-primary vaccination in controls, for all booster formulations, with an anti-D614G GMT ratio (98.3% CI) of 2.16 (1.69; 2.75) for MV(D614), an anti-B.1.351 ratio of 1.96 (1.54; 2.50) for MV (B.1.351) and anti-D614G and anti-B.1.351 ratios of 2.34 (1.84; 2.96) and 1.39 (1.09; 1.77), respectively, for BiV. All booster formulations elicited cross-neutralizing antibodies against Omicron BA.2 across vaccine priming subgroups and against Omicron BA.1 (evaluated in BNT162b2-primed participants). Similar patterns in antibody responses were observed for participants aged [≥]56 years. No safety concerns were identified. Conclusion CoV2 preS dTM-AS03 boosters demonstrated acceptable safety and elicited robust neutralizing antibodies against multiple variants, regardless of priming vaccine. ClinicalTrials.gov: NCT04762680

3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.08.21264302

ABSTRACT

Background This study evaluated the safety and immunogenicity of an AS03-adjuvanted SARS-CoV-2 recombinant protein candidate vaccine, CoV2 preS dTM. Methods This Phase 2, modified double-blind, parallel-group study (NCT04762680) was conducted in adults, including those at increased risk of severe COVID-19. Participants were randomised 1:1:1, stratified by age (18-59/[≥]60 years), rapid serodiagnostic test (positive/negative) and high-risk medical conditions (yes/no), to receive two injections (day [D]1 and D22) of 5{micro}g, 10{micro}g or 15{micro}g of CoV2 preS dTM antigen with fixed AS03 content. Interim safety and reactogenicity results (to D43) and neutralising antibodies (Nabs) against the D614G variant are presented (primary objectives). Findings Of 722 participants enrolled and randomised between 24 February and 8 March 2021, 721 received [≥]1 injections (5{micro}g, n=240; 10{micro}g, n=239; 15{micro}g, n=242). Four participants reported unsolicited immediate adverse events (AEs), two were vaccine-related (investigator assessment). Five participants reported seven vaccine-related medically-attended AEs. No vaccine-related serious AEs and no AEs of special interest were reported. Solicited reactions (local and systemic) were reported at similar frequencies between study groups; these were mostly mild to moderate and transient, with higher frequency and intensity post-injection 2 than post-injection 1. In SARS-CoV-2 na ive participants at D36, 96'9%, 97.0% and 97'6% of participants had [≥]4-fold-rise in NAb titres from baseline in the 5{micro}g-, 10{micro}g- and 15{micro}g-dose groups, respectively. NAb titres increased with antigen dose in younger (GMTs: 2954, 3951 and 5142 for 5{micro}g-, 10{micro}g- and 15{micro}g-dose groups) but not older adults (GMTs: 1628, 1393 and 1736, respectively). NAb titres in non-na ive adults after one injection were higher than titres after two injections in na ive adults. Interpretation Two injections of CoV2 preS dTM-AS03 demonstrated acceptable safety and reactogenicity, and robust immunogenicity in SARS-CoV-2 na ive and non-na ive adults. These results informed antigen dose selection for progression to Phase 3 evaluation of primary and booster vaccination.


Subject(s)
COVID-19
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.06.16.448525

ABSTRACT

The emergence of SARS-CoV-2 variants of concern (VOC) requires adequate coverage of vaccine protection. We evaluated whether a spike ferritin nanoparticle vaccine (SpFN), adjuvanted with the Army Liposomal Formulation QS21 (ALFQ), conferred protection against the B.1.1.7 and B.1.351 VOCs in Syrian golden hamsters. SpFN-ALFQ was administered as either single or double-vaccination (0 and 4 week) regimens, using a high (10 g) or low (0.2 g) immunogen dose. Animals were intranasally challenged at week 11. Binding antibody responses were comparable between high- and low-dose groups. Neutralizing antibody titers were equivalent against WA1, B.1.1.7, and B.1.351 variants following two high dose two vaccinations. SpFN-ALFQ vaccination protected against SARS-CoV-2-induced disease and viral replication following intranasal B.1.1.7 or B.1.351 challenge, as evidenced by reduced weight loss, lung pathology, and lung and nasal turbinate viral burden. These data support the development of SpFN-ALFQ as a broadly protective, next-generation SARS-CoV-2 vaccine.


Subject(s)
Weight Loss
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.28.441763

ABSTRACT

Potent cellular responses to viral infections are pivotal for long-lived protection. Evidence is growing that these responses are critical in SARS-CoV-2 immunity. Assessment of a SARS-CoV-2 spike ferritin nanoparticle (SpFN) immunogen paired with two distinct adjuvants, Alhydrogel (AH) or Army Liposome Formulation containing QS-21 (ALFQ) demonstrated unique vaccine evoked immune signatures. SpFN+ALFQ enhanced recruitment of highly activated classical and non-classical antigen presenting cells (APCs) to the vaccine-draining lymph nodes of mice. The multifaceted APC response of SpFN+ALFQ vaccinated mice was associated with an increased frequency of polyfunctional spike-specific T cells with a bias towards TH1 responses and more robust SARS-CoV-2 spike-specific recall response. In addition, SpFN+ALFQ induced Kb spike (539-546)-specific memory CD8+ T cells with effective cytolytic function and distribution to the lungs. This epitope is also present in SARS-CoV, thus suggesting that generation of cross-reactive T cells may provide protection against other coronavirus strains. Our study reveals that a nanoparticle vaccine, combined with a potent adjuvant, generates effective SARS-CoV-2 specific innate and adaptive immune T cell responses that are key components to inducing long-lived immunity.


Subject(s)
Virus Diseases , Severe Acute Respiratory Syndrome
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.09.439166

ABSTRACT

Emergence of novel variants of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) underscores the need for next-generation vaccines able to elicit broad and durable immunity. Here we report the evaluation of a ferritin nanoparticle vaccine displaying the receptor-binding domain of the SARS-CoV-2 spike protein (RFN) adjuvanted with Army Liposomal Formulation QS-21 (ALFQ). RFN vaccination of macaques using a two-dose regimen resulted in robust, predominantly Th1 CD4+ T cell responses and reciprocal peak mean neutralizing antibody titers of 14,000-21,000. Rapid control of viral replication was achieved in the upper and lower airways of animals after high-dose SARS-CoV-2 respiratory challenge, with undetectable replication within four days in 7 of 8 animals receiving 50 {micro}g RFN. Cross-neutralization activity against SARS-CoV-2 variant B.1.351 decreased only [~]2-fold relative to USA-WA1. In addition, neutralizing, effector antibody and cellular responses targeted the heterotypic SARS-CoV-1, highlighting the broad immunogenicity of RFN-ALFQ for SARS-like betacoronavirus vaccine development. Significance StatementThe emergence of SARS-CoV-2 variants of concern (VOC) that reduce the efficacy of current COVID-19 vaccines is a major threat to pandemic control. We evaluate a SARS-CoV-2 Spike receptor-binding domain ferritin nanoparticle protein vaccine (RFN) in a nonhuman primate challenge model that addresses the need for a next-generation, efficacious vaccine with increased pan-SARS breadth of coverage. RFN, adjuvanted with a liposomal-QS21 formulation (ALFQ), elicits humoral and cellular immune responses exceeding those of current vaccines in terms of breadth and potency and protects against high-dose respiratory tract challenge. Neutralization activity against the B.1.351 VOC within two-fold of wild-type virus and against SARS-CoV-1 indicate exceptional breadth. Our results support consideration of RFN for SARS-like betacoronavirus vaccine development.


Subject(s)
COVID-19
7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.24.436523

ABSTRACT

The emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants stresses the continued need for next-generation vaccines that confer broad protection against coronavirus disease 2019 (COVID-19). We developed and evaluated an adjuvanted SARS-CoV-2 Spike Ferritin Nanoparticle (SpFN) vaccine in nonhuman primates. High-dose (50 mcg) SpFN vaccine, given twice within a 28 day interval, induced a Th1-biased CD4 T cell helper response and a peak neutralizing antibody geometric mean titer of 52,773 against wild-type virus, with activity against SARS-CoV-1 and minimal decrement against variants of concern. Vaccinated animals mounted an anamnestic response on high-dose SARS-CoV-2 respiratory challenge that translated into rapid elimination of replicating virus in their upper and lower airways and lung parenchyma. The potent and broad immunogenicity profile of this vaccine and its resulting efficacy in NHPs supports its utility as a candidate platform for SARS-like betacoronaviruses.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
8.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.27.064774

ABSTRACT

The magnitude of the COVID-19 pandemic underscores the urgency for a safe and effective vaccine. Here we analyzed SARS-CoV-2 sequence diversity across 5,700 sequences sampled since December 2019. The Spike protein, which is the target immunogen of most vaccine candidates, showed 93 sites with shared polymorphisms; only one of these mutations was found in more than 1% of currently circulating sequences. The minimal diversity found among SARS-CoV-2 sequences can be explained by drift and bottleneck events as the virus spread away from its original epicenter in Wuhan, China. Importantly, there is little evidence that the virus has adapted to its human host since December 2019. Our findings suggest that a single vaccine should be efficacious against current global strains. One Sentence SummaryThe limited diversification of SARS-CoV-2 reflects drift and bottleneck events rather than adaptation to humans as the virus spread.


Subject(s)
COVID-19
9.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.03.15.992883

ABSTRACT

SARS-CoV-2 is a zoonotic virus that has caused a pandemic of severe respiratory disease--COVID-19-- within several months of its initial identification. Comparable to the first SARS-CoV, this novel coronaviruss surface Spike (S) glycoprotein mediates cell entry via the human ACE-2 receptor, and, thus, is the principal target for the development of vaccines and immunotherapeutics. Molecular information on the SARS-CoV-2 S glycoprotein remains limited. Here we report the crystal structure of the SARS-CoV-2 S receptor-binding-domain (RBD) at a the highest resolution to date, of 1.95 [A]. We identified a set of SARS-reactive monoclonal antibodies with cross-reactivity to SARS-CoV-2 RBD and other betacoronavirus S glycoproteins. One of these antibodies, CR3022, was previously shown to synergize with antibodies that target the ACE-2 binding site on the SARS-CoV RBD and reduce viral escape capacity. We determined the structure of CR3022, in complex with the SARS-CoV-2 RBD, and defined a broadly reactive epitope that is highly conserved across betacoronaviruses. This epitope is inaccessible in the "closed" prefusion S structure, but is accessible in "open" conformations. This first-ever resolution of a human antibody in complex with SARS-CoV-2 and the broad reactivity of this set of antibodies to a conserved betacoronavirus epitope will allow antigenic assessment of vaccine candidates, and provide a framework for accelerated vaccine, immunotherapeutic and diagnostic strategies against SARS-CoV-2 and related betacoronaviruses. HIGHLIGHTSHigh resolution structure of the SARS-CoV-2 Receptor-Binding-Domain (RBD). Recognition of the SARS-CoV-2 RBD by SARS-CoV antibodies. Structure of the SARS-COV-2 RBD in complex with antibody CR3022. Identification of a cryptic site of vulnerability on the SARS-CoV-2 Spike.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL